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1 Aims and Objectives of QSPR Research 
The structural formula of an organic compound, in principle, 
contains coded within it all of the information which predeter- 
mines the chemical, biological, and physical properties of that 
compound. The molecular formula defines precisely all of the 
molecular properties and features, including, for example, the 
compound's rate of oxidation, the equilibrium constant and rate 
of absorption on any defined surface, the degree to which it will 
inhibit rust formation in sea water under any defined set of 
conditions, and so on. If we could only read the code, such 
properties could be elucidated simply from a knowledge of the 
molecular formula. 

There are two main alternative approaches to Edisonian 
random testing to find compounds with superior properties. One 
consists of theoretical calculations using quantum and statistical 
mechanics. Solution of the Schrodinger equation would allow 
prediction of all of these factors in stationary states of molecules. 
However, although much progress has been made, particularly 
with semi-empirical methods, the practical application of quan- 
tum theory to complex systems still remains a distant possibility. 

The other alternative is QSAR/QSPR. A major goal of 
Quantitative Structure-Activity Relationship (QSAR) or Quan- 
titative Structure Property Relationship (QSPR) studies is to 
find a mathematical relationship between the activity or 
property under investigation (e.g. LD,,, pKa, etc.), and one or 
more descriptive parameters (descriptors) related to the struc- 
ture of the molecule. While such descriptors can themselves be 
experimental properties of the molecule, it is generally more 
useful to use descriptors derived mathematically from either the 

2D or the 3D molecular structure, since this allows any relation- 
ship so derived to be extended to the prediction of the property 
or activity for unavailable compounds. If an acceptable model of 
this type can be found, it can guide the synthetic chemist in the 
choice between alternative hypothetical structures. More funda- 
mentally, such studies can illuminate, or even elucidate, the 
'mechanism' by which the property or activity in question is 
related to the chemical structure. 

2 Background 
Some years ago, in a major ongoing project in one of our 
laboratorie~,*-~ we were faced with the analysis of complex 
mixtures containing up to 30 different compounds derived from 
a single precursor at high temperature. We found that such 
mixtures could satisfactorily be analysed by the GC/MS 
method. The peaks were resolved, and from their fragmentation 
patterns, knowledge of the precursor, and some idea of the 
mechanism, we were able to assign chemical structures to all of 
our products. However, before we could carry out a quantitative 
analysis, it was necessary to know the response factors for all of 
the compounds, i.e., the relationship between the integrated area 
under the GC curve for the individual peaks, and the compound 
structure. Response factors vary considerably. Many of the 
compounds formed as products were unavailable, and in some 
cases, even unknown; it was quite impracticable to measure the 
response factors experimentally. Thus, we began an investi- 
gation of QSPR relationships between GC analytical response 
factors and chemical structures. 
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An illustration of the problem is demonstrated by the analysis 
of the GC trace of the mixture shown in Figure la. We used 
Partial Least Squares Analysis to search for a reliable depen- 
dence of the R F  on the structural descriptors in terms of atomic 
 grouping^.^ We measured the response factors for a set of 120 
different compounds under standard conditions. We used these 
response factors as the dependent variable in the Partial Least 
Squares Analysis and used seventeen descriptors as the explana- 
tory variables. All of these descriptors were simply determined 
from the chemical structure: (in order from 1 to 17) molecular 
weight, numbers of C, H, 0, N, and S atoms, numbers of C=C, 
C=O, and C=N double bonds, number of C r N  triple bonds, 
number of rings, and numbers of carboxyl, hydroxyl, aldehyde, 
ester, amino, and ether or sulfide groups. The results of the 
Partial Least Squares Analysis led to equation 1, which then 
enabled the prediction of response factors for hypothetical 
compounds. The success of the method is shown graphically in 
Figure 1 b. Although the correlation is not perfect, it is certainly 
much better than the alternative, which was to have set all of the 
RF  values as equal to unity. 

RF = 0 991 - 0.000908~~ + 0.00234~~ + 0.00276~~ 
- 0.1 I ~ x ,  - 0 071 Ix, - 0.160~~ + 0.00337~~ 
- 0.0434~~ - 0.0479~~ - 0 0 7 7 7 ~ ~ ~  + 0.00481~, 
- 0 . 3 2 3 ~ ~ ~  - 0.0536~~~ - 0 206x1, - 0.0459~~~ 
- 0 I66x, 6 - 0.0675~~~ (1) 

This initial problem, and its interim solution, led to our 
interest in the search for regularities in the manner in which 
various molecular properties change, and how such variations 
depend upon molecular structure - the main focus of QSAR/ 
QSPR investigations. The general solution of this problem is of 
great importance. Even for a narrow class of compounds, any 
regularities disclosed can be used to rationalize the behaviour of 
molecules in the set, and especially to forecast the properties of 
other (sometimes hypothetical) compounds belonging to the 
given class. Moreover, the relationships thus revealed between 
structures and properties (or biological activities) could be 
important for the development of a new theory, which could in 
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Figure 1 (a) G C  trace of a mlxture of ten compounds (b) Plot of the 
experimental vs. calculated (by the PLS model) response factor values 
for compounds from the reference set (0) and from the test set ( A )  

turn both explain the observed phenomena and illuminate the 
mechanisms of physical or chemical phenomena or of biological 
activities. Thus QSAR/QSPR studies can bring us nearer to the 
ultimate goal of targeted molecular design. 

QSAR/QSPR investigations in the past two decades have 
made significant progress in the search for quantitative relations 
between structure and property. Various mathematical model- 
ling techniques have been employed and a whole new area 
involving the application of computers to chemistry has opened 
up. Extensive software for the determination of ‘structure- 
activity/property’ relationships has been created, including 
modules for structure input and for the calculation of empirical 
and also non-empirical descriptors of the given structures. In 
most cases, a statistical treatment of these results is also incor- 
porated into the package. To mention a few representative 
programs, there are universal packages, such as ADAPT distri- 
buted by MDL and CODESSA distributed by Semichem. Other 
QSAR packages have been designed to treat congeneric struc- 
tures only: DARC/PELCO by University of Paris, and OASIS 
by PI Burgas, Bulgaria. Additionally, some programs provide 
QSAR for specific compounds or data: TOPKAT by HDI, 
MEDCHEM by Pomona College, and POLLY by University of 
MN. 

3 Theoretical Foundation of QSAR/QSPR 
The mathematical foundation of quantitative structure- 
activity/property relationships relies on the principle of poly- 
linearity (PPL).s According to the PPL, a continuous and 
singular dependence between the (experimentally measurable) 
property P, and some intrinsic structural factor of the molecule, 
4, is assumed to be linear in a certain domain of this factor, (x,). 
This assumption may be valid or invalid, depending on the 
functional form of the dependence P,(x,) in the vicinity of point 
x,. In the event of PPL being valid, the experimental property 
may depend upon only one structural factor, X , ,  and the 
corresponding linear one-parameter regression equation can be 
found using the linear least squares method (equation 2). 
Alternatively, the property may depend linearly on several 
structural factors XJ, and the corresponding multi-parameter 
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regression is found using the multilinear least squares method 
(equation 3) 

In the event that the PPL approximation is invalid, some form 
of nonlinear equation has to be applied for the description of the 
dependence of the experimental property on structural factors 
If a nonlinear transformation of the structural factors is used, 
e g  square, logarithm, or cross-term (equation 4), then the 
formal functional dependence of PI on X; is still linear and the 
corresponding correlation equation can be found using the same 
multilinear least squares method (equation 5) 

(4) 

( 5 )  

(square)X; = 
or (cross-term)$ = X,Xk 

PI = abl + a;,x* + a;,x; + U;]x3 + 

or (1ogarithm)X; = InX, 

In some cases - notable examples in chemistry include the 
exponential relationships between experimentally measurable 
quantities and intrinsic structural factors in chemical or absorp- 
tion kinetics - the nonlinear least squares method has to be 
applied in order to find the regression parameters aJ1, predeter- 
mining the functional dependence P,(X,) For instance, in the 
case of the simple parallel reaction A - P B  or C with two rate 
constants k ,  and k , ,  the observable rate constant by initial 
compound A is given by equation 6 and the regression coeffi- 
cients a,  can be found using nonlinear least squares techniques 

k,,,([AJ) = k ,  + k, = exp( - AG',/RT) + exp( - AG;/RT) 

and 
where AG\ = a o l  + a , , X ,  + a 2 , X 2  + a 3 1 X 3  + (6) 

AG; = ao2 + al,X1 + a 2 2 X 2  + ~ 3 2 X 3  + 

However, most of the QSAR/QSPR applications are based on 
the PPL and therefore we limit ourselves in the following 
discussion to linear relationships only, keeping in mind that their 
extension to nonlinear dependenceis is straightforward 

Historically, the first applications of quantitative structure- 
property relationships in chemistry were related to chemical 
reactivity in solution Hammett6 defined the o-constant of a 
substituent in a phenyl ring as the logarithmic ratro of the acidic 
dissociation constants of the substituted to unsubstituted ben- 
zoic acid in aqueous solution (equation 7), he demonstrated its 
applicability for the description of rate and equilibrium con- 
stants of various chemical reactions involving substituted 
benzenes 

Taft7 extended these so-called linear free energy relationships 
to aliphatic structures by defining U* constants of substituents as 
the differences in the logarithmic ratios of the rate constants for 
acid- and base-catalysed hydrolysis reactions of substituted and 
unsubstituted ethyl acetates (equation 8) 

To date, numerous empirical scales have been proposed to 
describe the inductive, resonance, and steric substituent effects 
in the molecules as well as for the description of solvent effects on 
the chemical and physical properties of compounds * 

A major disadvantage in the use of these empirical molecular 
structural factors as descriptors results from their definition on 
the basis of some experimental information Consequently, 
certain standard compounds used to define the substituent or 
solvent parameters have to be synthesized and the correspond- 
ing standard properties measured Purely experimental 
problems (instability of the compound, insolubility in a given 
medium, etc ) may substantially restrict the selection of com- 
pounds whose properties can be predicted using these descrip- 

' O 

tors Notably, because of the insufficient solubility of many 
substituted benzoic acids in aqueous solution, Hammett had to 
use pK, values in 50% ethanol-water mixtures (another 
standard series) for the extension of his 0-scale 

4 Main  Types of Descriptors used in a QSAR/ 

We now review the main types of theoretical descriptors derived 
from molecular structure We believe that it is advantageous to 
subdivide descriptors into various subsets according to the 
molecular peculiarities which they reflect Thus, we distinguish 
constitutional, topological, geometric, electrostatic, quantum- 
chemical, thermodynamic, and solvation descriptors It should 
be emphasized, however, that many descriptors are, in fact, 
simultaneously sensitive to a number of molecular features, and 
the classification given below is therefore somewhat approxi- 
mate and provisional Examples of commonly used descriptors 
are given in Table 1 

Constitutional descriptors depend fundamentally on the com- 
position of the molecule rather than on the topology, geometry, 
or electronic structure The counts of atoms of different elements 
and the molecular weight reflect the composition only, however, 
numbers of rings or double bonds are also sensitive to the 
molecular topology Constitutional descriptors, whilst very 
simple in nature, should be included in QSAR/QSPR studies If  
not, the possibility exists that a simple dependency (additivity) 
upon number of atoms or molecular weight would be repre- 
sented by other more complex (and thus more difficult-to- 
comprehend) descriptors, or may even be overlooked 
a1 toge ther 

Topological descriptors are probably the most widely used 
class of descriptors and include such well-known classical mole- 
cular parameters as the Wiener index,' ' the Randic index,' and 
the Kier & Hall Molecular Connectivity index These descrip- 
tors are obviously most sensitive to the molecular topology ( I  e 
molecular connectivity), and in particular to the branching of 
the molecule Again, some topological descriptors (e  g the Kier 
& Hall index) also reflect molecular composition, although to a 
lesser extent than the constitutional descriptors 

The electrostatic descriptors essentially reflect the electro- 
static structure of the molecule ( e  g the partial charge distribu- 
tion or the electronegativities of the atoms), although in many 

QSPR Program 

Table 1 Main types of molecular descriptors 

Constitutional descriptors 
molecular weight 
counts of atoms and bonds 
counts of rings 

Topological descriptors 
Weiner index 
Randic indices 
Kier & Hall indices 
information contents 

Electrostatic descriptors 
partial charges 
polarity indices 
charged partial surface areas 

Geometrical descriptors 
principal moments of inertia 
molecular volume 
solvent-accessible molecular surface 
shadow indices 

Quantum-chemical descriptors 
net atomic charges 
dipole moment 
polarizabili ty 
U,X bond orders 
HOMO, LUMO energies 
FMO reactivity indices 
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cases they are also related to the molecular topology and 
composition. l4 For example, the descriptors of the ‘Charged 
Partial Surface Areas’ family reflect, in comparable proportions, 
the electrostatic, geometric, and topological features of a mole- 
cule. 5,16 The distribution of partial charges can be calculated 
by one or more non-empirical procedures within the QSAR/ 
QSPR program, or independently of the program by any desired 
method, for instance, by a quantum-chemical program. 

Geometric descriptors represent the three-dimensional 
characteristics of the molecular structure, i.e. molecular size and 
molecular shape.’ 

Quantum-chemical descriptors are a relatively new and 
rapidly developing class of molecular descriptors. As ab initio 
and semi-empirical quantum chemical calculations become 
increasingly available and routine, these descriptors have 
become more widely used. Quantum-chemical calculations can 
provide vast amounts of varied information about chemical 
structure including geometric and electrostatic data. But most 
importantly such calculations can provide information about 
the internal electronic properties of molecules which is not 
available by other means. Thus, quantum-chemical descriptors 
extend the areas of application of QSAR/QSPR techniques. The 
most frequently used quantum-chemical descriptors include the 
energy of the highest occupied and lowest unoccupied molecular 
orbitals, frontier orbital electron densities, Mulliken population 
charge distribution, and dipole moments. 8-24 

In addition to using these descriptors in the QSAR/QSPR in 
their traditional forms, it is frequently possible to include 
additional ‘modified’ descriptors. For example, most descrip- 
tors may also be normalized by dividing by the number of atoms, 
therefore giving an ‘average’ value of the descriptor. Advanced 
QSAR/QSPR programs can calculate not only the standard 
descriptor values, but also several modifications of them. 

QSPR REPORT AND PREDICTIONS 

predicted BP = 354.69K 

5 General Flow-Chart of a QSAR/QSPR 

We proceed now with a more detailed description of the overall 
procedure of computer-assisted QSAR/QSPR research which is 
summarized by the following steps (Figure 2). 

Program 

1 PREPARATION OF INPUT DATA 

cyclohexane C6Hl2 BP = 353.87K 

1 
f 3D GEOMETRY OPTIMIZATION 1 

# 

Figure 2 Flow chart of a QSPR study. 

5.1 Preparation of Input Data 
First, the set of experimental data and the set of corresponding 
structures each needs to be prepared in computer-acceptable 
format. The experimental data, being numerical values, are 
usually easily represented in computer-readable format. The 
computer-compatible representation of structural formulae is 
an important step, which will be discussed in more detail below. 
Briefly, a specialized molecular editor is usually needed for the 
conversion of drawings into the corresponding connectivity 
tables. 

5.2 3D-Geometry Optimization 
Molecular shapes and conformations are often of great import- 
ance for the prediction and description of biological activities 
and molecular properties. Simple molecular editors create con- 
nectivity tables which do not contain any geometrical infor- 
mation. In such cases a 2D+3D converter is required. For 
example, the MOLGEO program2 converts the 2D-connecti- 
vity tables into a 3D-representation of the molecule with concur- 
rent geometry optimization. Programs exist which combine a 
molecular editor with a geometry optimization routine that is 
usually based on molecular mechanics or a semi-empirical 
method, e.g. PCMODEL, SYBYL, HyperChem. If more precise 
3D Cartesian coordinates are required an additional refinement, 
by quantum-chemical ab initio or semi-empirical methods such 
as (e.g.  MOPAC2’ and AMPAC28 programs), is 
suitable. 

5.3 Calculation of Molecular Descriptors 
After the set of 3D-optimized structures is prepared, the QSAR/ 
QSPR program carries out the calculation of molecular descrip- 
tors. The molecular descriptors applicable in QSAR/QSPR 
research were discussed in more detail above. In order to 
calculate quantum-chemical descriptors, preliminary calcula- 
tions of the molecular electronic structure by the appropriate 
method (e.g. AM126) are required. 

5.4 Statistical Treatment of Data 
The set of molecular descriptors calculated by the QSAR/QSPR 
package is further treated via comparison with the experimental 
data by (mu1ti)parameter linear regression analysis.29 Two 
major problems arise which are related to the use of a large 
number of molecular descriptors as potential independent vari- 
ables in the QSAR/QSPR equations under development. First, 
in the case of hundreds or even thousands of descriptor scales, 
the number of possible (mu1ti)linear equations to be verified for 
the best correlation is astronomically large and the calculation 
of all relevant regression equations takes an impractically long 
time even using the fastest of modern computers. Secondly, the 
calculated descriptor scales are, in general, non-orthogonal, i.e. 
the corresponding intercorrelation coefficients deviate signifi- 
cantly from zero. It is well-known from basic mathematics that 
an arbitrary scale (property P) cannot be singularly represented 
in the space of such descriptor scales. In other words, two or 
more different correlation equations exist in this space with 
exactly the same statistical fit characteristics. This obviously 
complicates the physical interpretation of any of these equations 
immensely. Even worse, the collinearity of descriptor scales may 
often lead to statistically meaningless regression equations 
without any predictive power. Therefore, special precautions 
have to be taken to avoid or alleviate these problems. For 
instance, factor analysis methods like principal component 
analysis (PCA) or nonlinear partial least-squares (NIPALS) can 
be applied to transform the non-orthogonal descriptor scales 
into orthogonal formal principal factors, describing within a 
given statistical tolerance all of these scales.3o The dimensiona- 
lity of the corresponding vector space is usually dramatically 
reduced making the search for the best correlation quite 
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straightforward However, it is often very difficult or even 
impossible to give a physically meaningful interpretation either 
to the regression coefficients preceding the formal scales, or to 
these scales themselves In order to overcome this difficulty, 
numerous target transformation techniques are available which 
aim to find (nearly) orthogonal subsets of original descriptor 
scales with the maximum coverage of the full descriptor space 
Complex logical or heuristic procedures, described in more 
detail below, can also be efficiently used to find the best 
(mu1ti)linear representation of the given property in the (nearly) 
orthogonal basis of natural descriptor sets 

5.5 QSARIQSPR Report 
The typical output of a QSAR/QSPR program includes a 
number of correlation equations including correlation coeffi- 
cients (R or R 2 ) ,  statistical significance tests (F-test, t-test), 
involved descriptors (x,) and their corresponding regression 
coefficients (a,) Selection of the best correlation model is usually 
done by validation of each model either by cross-validation 
techniques or by prediction response values for the test set 

6 QSAR/QSPR Software 
A statistical procedure is always necessary for the statistical 
treatment of data obtained from a QSAR/QSPR program 
There are several commercially available statistical packages, 
such as SAS or STATGRAPHICS 3 2  However, such modules 
are not always suitable for handling very large data sets or for 
producing an unambiguous and easily understandable selection 
of the parameters involved in the required multiparameter 
regression Numerous QSAR/QSPR packages are available 
both commercially and in the academic environment The 
DARC and OASIS programs are configured to treat so-called 
‘congeneric’ sets of molecules In other words, all structures in 
the set under consideration should possess the same basic 
molecular fragment Such packages utilize the most traditional 
approach in QSAR, established by Hansch in the late 
1960’s 3 3  34 The Hansch approach assumes that ( I )  there is a 
basic fragment in the structure responsible for a given kind of 
property/activity, ( 1 2 )  the variation of the property/activity value 
can be explained by the influence of different substituents 
attached to the basic fragment, and (zzz) the property/activity 
value can be calculated as an additive value, the sum of terms 
being derived from the physicochemical constants of the substi- 
tuents (similar to the Hammett-Taft equations 7,8) 

However, many failures of the Hansch equation have been 
observed, and significant limitations of this approach have been 
recognized over the past 30 years A further serious drawback is 
evident, in the real world the series of compounds that most 
interest chemists are rarely congeneric’ It is impossible for the 
Hansch approach to be applied to such non-congeneric series 
Even when a series does comprise ‘related’ compounds, it is 
often difficult to assign a physicochemical constant to an 
unusual substituent Hansch analysis proved to be a good 
beginning, but the development of other approaches became 
essential 

There are many programs currently available which have been 
formulated to work on specific data sets A good example is the 
TOPKAT program, designed exclusively to predict toxicity 
endpoints from molecular structure The MEDCHEM program 
is structured to calculate logP values The POLLY program 
operates on a restricted set of molecular descriptors By con- 
trast, the ADAPT and CODESSA programs are universal 
packages able, in principle, to treat any set of compounds and 
their associated experimental data, although in some individual 
cases the use of one of the specific programs might lead to a more 
precise regression model 

The ADAPT program offers numerous options and possibili- 
ties such as intellectual cluster analysis within a given set of 
compounds, complex statistical treatment of the experimental 
data together with the calculated descriptors, combination of 

the empirical parameters with those obtained by the modern 
non-empirical quantum chemical calculations, expert system 
features, databases, highly developed user interfaces with gra- 
phical input-output, and other menus or windows 

CODESSA (Comprehensive Descriptors for Structural and 
Statistical Analysis) is a chemical multi-purpose statistical 
analysis and prediction program CODESSA operates in a 
Microsoft Windows environment for personal computers and 
also provides an easy-to-use user interface with menus and 
windows for textual and graphical output Within the frame- 
work of the program up to one thousand varied molecular 
descriptors can be calculated Moreover, CODESSA provides 
the facility to construct numerous new descriptors using any 
previously calculated descriptors and standard mathematical 
operations and functions The correlation techniques available 
include multi-linear regression analysis, principal component 
analysis, and the heuristic method Elaborate techniques have 
been developed in CODESSA for a fast and adequate search for 
the best correlation equations for a given property and structure 
set In the following section one of these techniques is described 
in more detail 

7 Statistical Treatment of Data in 
QSAR/QSPR 

As discussed above, the rigorous selection of the uniquely best 
parameters for a correlation equation from a very large descrip- 
tor set remains an unsolved statistical problem As frequently 
pointed out in statistical texts and papers, the existing heuristic 
selection of descriptors in a step-wise multi-parameter regres- 
sion analysis does not necessarily guarantee the best selection of 
descriptors 

In the CODESSA program the search for the multi-parameter 
regression with the maximum predictive ability is performed 
using the following strategy 

1 First, the intercorrelations between all descriptors are 
calculated and all orthogonal pairs of descriptors i and J (with 
Rd < Rhln) are found 

2 The statistical analysis of the property starts with the 
calculation of the two-parameter regression with each orthogo- 
nal pair of descriptors, obtained in step 1 The descriptor pairs 
with high regression correlation coefficients are then selected for 
higher-order regression treatments 

3 For each descriptor pair selected in the previous step a non- 
collinear descriptor scale, k (with R& < R& and Rg, < R&), is 
added, and the respective three-parameter regression is calcu- 
lated If the Fisher criterion at a given probability level, F, is 
smaller than that for the best two-parameter correlation, the 
latter is chosen as the final result and the program proceeds to 
the printout section (step 5 )  Otherwise, the descriptor triplets 
with the highest regression correlation coefficients are selected 
for the next step 
4 In a similar fashion, an additional non-collinear descriptor 

scale is added to each descriptor subset selected in the previous 
step, and the respective (n + 1)-parameter regression treatment 
is performed If the Fisher criterion at the given probability level 
F, is now smaller than for the best n-parameter correlation found 
in the previous step, the latter is chosen as the final result and the 
program proceeds to the printout section (step 5 )  Otherwise, the 
descriptor subsets with the highest regression correlation coeffi- 
cients are selected, and the procedure described in Step 4 is 
repeated with n = n + 1 

5 The final equation, used in the following prediction section 
of the program, is selected on the basis of the maximum Fisher 
criterion and the highest cross-validated correlation coefficient 
The cross-validation technique is carried out as follows ( I )  for 
each experimental data point multi-linear regression is recalcu- 
lated with the same descriptors for the data set without this 
point, ( 1 2 )  the obtained regression equation is then used to 
predict the value of this data point, and (zzz) finally, the obtained 
array of predicted data points is linearly correlated with the 
array of experimental data points providing a cross-validated 
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correlation coefficient. Thus, the cross-validation technique 
provides an estimation of the stability of the obtained regression 
model, i.e. the sensitivity of the model to the elimination of any 
single data point. 

All criteria involved in the statistical treatment can be 
changed if so desired, in order to maximize the effectiveness of 
the search. 

8 Overview of Some QSPR Results Obtained 
We now present some results concerning the correlation of 
structure and property in organic compounds. These findings 
were recently obtained using the CODESSA program. The goal 
of these studies is to find both the best regression model for the 
prediction of properties, and also to determine which types of 
descriptors are the most sensitive to each of the various 
properties. 

8.1 Response Factors 
Returning to the calculation of response factor (RF) values, 
Figure 3a illustrates the results obtained from a QSPR treatment 
of a set of 152 diverse organiccompounds.36 Use of the extended 
set of descriptors developed in the CODESSA program allowed 
us to improve the correlation significantly over the PLS analy- 
~ 1 s . ~  The regression presented in Figure 3a with only 6 para- 
meters (one third of the number used in the PLS treatment) has a 
better correlation coefficient (R2 = 0.892 vs. R2 = 0.840). 98% 
of the observed values were found to be within a 95% confidence 
interval for values predicted using the six-parameter equation 
(Table 2a). 

The data set for gas chromatographic response factors and 
retention times contained structures belonging to classes of 
organic compounds very diverse in their chemical nature: 
alkanes, aromatic compounds, ethers, carbonyl compounds, 
carboxylic acids, alcohols, aldehydes, etc. 

The measured response factor corresponds to the ‘response’ 
of the compound in a flame ionization detector (FID). Flame 
ionization is a multi-step process involving thermal decompo- 
sition of a compound with subsequent ‘chemi-ionization’. 
Therefore, the yield of this process depends on the chemical 
nature of the molecules and the atoms from which they are 

Organic compounds (152 structures) 
R2=0.8924 F=200.53 s2=0.0029 (6 descnptors) 

constructed. As expected from this qualitative reasoning, both 
types of descriptors were involved in obtaining the correlation. 
The most important descriptor is the relative weight of ‘effective’ 
carbon atoms in the molecule, which has precedence given that 
only non-oxidized carbon atoms effectively produce a response 
in the FID. In this study an ‘effective’ carbon atom was defined 
as one connected only to other carbon or hydrogen atoms. The 
relative number of ‘effective’ carbon atoms is also important for 
the same reasoning. The thermal cracking of a compound inside 
the flame of an FID begins with the weakest C-X bond (where X 
is any atom). This being the case, the minimum total bond order 
of a carbon atom is obviously an important descriptor. The total 
molecular one-centre electron-electron repulsion also proved to 
be an important descriptor. This quantity summarizes the 
repulsion of electrons in the atoms constituting the molecule, 
and is probably related to the tendency of thermally cracked 
products to undergo ‘chemi-ionization’. 

8.2 Retention Times 
A QSPR study of retention time data for the same set of 152 
diverse organic compounds yielded a highly successful correla- 
tion (Figure 3b).36 The best six-parameter equation obtained 
( R 2  = 0.959, Table 2b) is stable (cross-validated correlation 
coefficient Rzv = 0.955) and could be used, with considerable 
confidence, for the prediction of a retention time for an un- 
known compound. The few outliers (hexamethylbenzene, fluor- 
ene, 2-isopropoxyphenol, 1 -methyl-2-pyridone, and methyl 
phenyl sulfoxide) do not belong to any recognizable class of 
compounds and seem to be random. 

The most important descriptors in this correlation are the a- 
polarizability of the molecule and the minimum valency of an H 
atom in the compound. These quantum chemical indices can be 
considered to be related to the intermolecular interaction 
between the molecule studied and the gas chromatographic 
medium. The a-polarizablity of the compound characterizes the 
effectiveness of its intermolecular induction and dispersion 
interaction with the medium. The positive value of the respective 
regression coefficient is in accordance with physical consider- 
ations - compounds with higher polarizabilities have stronger 
interactions with the medium and thus higher retention values. 
The minimum valency ofan H atom characterizes the compound 

Organic compounds (1 52 structures) 
R2=0.9590 F=367.86 s2=0.5152 (6 descriptors) 

Figure 3 Plots of the calculated vs. experimental response factor (a) and retention time (b) values for the diverse set of 152 organic compounds 
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Table 2a Details of the correlation developed for the response factor data 

Descriptor Regression coefficient 

Intercept - 2 327 
( I )  Relative weight of ‘effective’ C atoms 
(2) Total molecular one-centre electron-electron repulsion energy 
(3) Relative number of ‘effective’ C atoms 
(4) Minimum total bond order (>  0 1) of a C atom 
(5) Minimum valency of an H atom 
(6) Total hybridization component of the molecular dipole 

- 0 9581 
- 0 002889 
- 1 160 
- 0 2060 

3 316 
- 0 0304 

f-criterion R2 

- 6 4 1  
20 76 0 4655 
1 1  34 0 7522 

0 7776 1 1  34 
10 60 0 8245 
8 83 0 8869 
2 73 0 8924 

Table 2b Details of the correlation developed for the retention time data 

Descriptor 

Intercept 
( I )  Relative number of C-H bonds 
(2) Total entropy of the molecule at 300 K divided by a number of atoms 
(3) a-Polarizability 
(4) Molecular weight 
( 5 )  Minimum valency of an H atom 
(6) Maximum atomic orbital electronic population 

Regression coefficient 

26 SO 
- 6 9 1  
- 0 871 

0 04624 
0 01873 

0 929 
-21  55 

t-criterion R2 

6 942 
9 269 0 1229 
8 543 0 6969 
8 389 0 9064 
S 869 0 9397 
5 362 0 9539 
4 256 0 9.590 

as a hydrogen-bonding donor Therefore, the presence of this 
term in the correlation indicates the importance of hydrogen 
bond formation between the compound studied and the GC 
medium The negative value of the respective regression coeffi- 
cient is expected (compounds with a lower value for minimum 
valency have stronger hydrogen bonds and, correspondingly, 
longer retention times) 

8.3 Boiling Points 
We studied the boiling point data for a set of 85 substituted 
pyridines provided by Reilly Industries, Inc 3 7  Among the 
substituents were methyl-, ethyl-, amino-, carboxamido-, 
cyano-, chloro-, carbonitrile-, and hydroxy-groups Preliminary 
component analysis of the data set revealed clustering of the 
compounds into two distinctive groups An examination of the 
compound distribution suggested hydrogen bonding as the most 
probable reason for such clustering Indeed, all compounds 
containing hydroxy-, amino-, and carboxamido-substituents 
fell into one group and the remainder into the other Hydrogen 
bonding is expected to lead to associated liquids, and therefore 
the boiling points of these structures predicted by the equation 
derived for non-associated compounds should be significantly 
lower than the corresponding experimental values This was 
demonstrated by our treatment, the reduced set of 63 non- 
associated compounds produced a good correlation 
( R 2  = 0 927) with only two descriptors the gravztatzon index 
calculated for all bonds and the total pomt-charge component of 
the molecular dzpole moment As expected, the boiling points 
predicted for the remaining 22 structures were lower than the 
experimental values 

A good multilinear regression model was obtained for all 85 
compounds for which data were available using six structural 
parameters ( R 2  = 0 948, Figure 4a) In the final model (Table 
3a) two descriptors were the same as previously mentioned the 
gravitation index (all bonds) and totalpomt-charge component of 
the molecular dzpole which characterize the general relationshp 
between the chemical structure and the boiling point Two 
descriptors, the hydrogen acceptors surface area and the relative- 
negative charged surface area, are solely related to hydrogen 
bonding and adjust the model to describe associated structures 
The two remaining descriptors, the minimum total bond order of 
an N atom and the average atomic nucleophilic reactivity index for  
an N atom, describe the availability of a nitrogen lone electron 
pair for intermolecular hydrogen bonding 

Considering that high boiling points are difficult to measure 

Table 3a Details of the correlation developed for the boiling 
point data 

R2 = 0 948, R:v = 0 876, F =  238 7, s = I3 8, n = 85 

Descriptor 
Regression 
coefficient 1-criterion 

Intercept -3093  - 11 8 
(1) Hydrogen acceptors surface area 6463 228 
(2) Gravitation index (all bonds) 0265 139 
(3) Minimum total bond order (> 0 I )  186 0 14 7 

(4) Total point-charge component of 20 69 10 4 

( 5 )  Relative negative charged surface area - 9 8 
(6) Average atomic nucleophilic reactivity 2680 2 6 4  

of an N atom 

the molecular dipole 
- 27 82 

index for an N atom 

Table 3b Details of the correlation developed for melting 

R2 = 0 857, R& = 0 843, F = I33 6, s = 36 1, n = 141 

Descriptor coefficient [-criterion 

Intercept 
( I )  Fractional hydrogen acceptors surface 525 8 19 9 

(2) Maximum atomic force constant 14 43 8 2  
(3) Maximum atomic orbital electronic 244 7 6 3  

point data 

Regression 

- 61 40 - 0 6  

area 

population 

contents of the second order 
(4) Average structural information - 61 61 - 5 2  

(5) HOMO-LUMO energy gap -38  10 - 4 7  
(6) Total hybridization component of the 37 02 4 2  

molecular dipole 

directly and are usually measured under reduced pressure then 
corrected to atmospheric pressure, the correlation equation 
obtained provides a successful fit to the data 

8.4 Melting Points 
We also searched for correlations of melting points of substi- 
tuted pyridines 3 7  The melting point is a difficult property to 
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All structures (85 structures) 
R2=0.9483 F=238.65 s2=189.5260 (6 descriptors) 

All structures (141 structures) 
R2=0.8568 F=133.62 s2=1303.0330 (6 descnmors) 

Figure 4 Plots of the calculated vs. experimental boiling points (a) and melting points (b) for the two sets of substituted pyridines 

correlate because singular molecular descriptors do not satisfac- 
torily describe many-body crystal packing effects and intermole- 
cular forces in condensed media. However, the multiple linear 
regression analysis of the melting points for a set of 141 
compounds for which data were available resulted in a satisfac- 
tory six parameter correlation equation (R2  = 0.857, Figure 4b). 
Again, one of the most important descriptors in the correlation 
equation (Table 3b) was a hydrogen bonding specific descriptor: 
fractional hydrogen acceptors surface area. This parameter dir- 
ectly represents the ratio of the surface area of the hydrogen 
acceptor atoms to the total surface area of the molecule. The 
other descriptors involved in this correlation were physically 
more diverse than those in the correlation of boiling points. This 
is not surprising as the melting point is expected to depend on 
more subtle intermolecular interactions in condensed phases 
than the boiling point. However, three descriptors in the six- 
parameter equation obtained for the melting points (the maxi- 
mum atomic force constant, the maximum atomic orbital electro- 
nic population and the total hybridization component of the 
molecular dipole) can be related to the intermolecular interac- 
tions in condensed media (charge-transfer and dipole-dipole 
interactions). The average structural information contents of the 
second order reflects the number of different structural fragments 
in the molecule and may therefore be related to the details of the 
crystal lattice packing. Notably, one of the main factors in this 
correlation was the HOMO-LUMO energy gap. For insulators, 
such as solid state substituted pyridines, this quantity can be 
related to the energy gap between the valence band and the 
empty band. The negative sign of the respective regression 
coefficient implies that solids with a smaller band gap are more 
resistant to disordering (melting). 

Hydrogen bonding obviously has a significant effect on the 
melting point, although the distinctive clustering of compounds 
according to association capability (as in the case of the boiling 
point) was not observed. 

8.5 Partition Coefficients 
A good correlation (R2 = 0.943) was obtained with the octanol- 
water partition coefficient of 7 1 substituted pyridines (Figure 
5).37 The equation obtained (Table 4) is quite successful, bearing 
in mind the great variety of functionality: amino, alkyl, amidio, 

structures (7 1 structures) 
R2=0.9432 F=177.02 s2=0.0366 (6 descriutors) 

Figure 5 Plot of the calculated V F  experimental octanol-water partition 
coefficient values for the set of substituted pyridines 

nitro, hydroxy, cyano, and thio groups, halogen atoms, ethers, 
esters, and aromatic rings. Moreover, both solids and liquids (at 
room temperature) were represented in the set. Kzer and Half 
valence connectivity index of the zeroth order and the number o j  
double bonds proved to be the most significant descriptors for the 
set of structures under investigation. The fact that similar 
descriptors have been reported to correlate with partition coeffi- 
cients of different compounds3* suggests that this correlation 
model has wider applications. The other descriptors are directly 
related to the properties of the N atom in the pyridines. This 
atom is obviously acting as a hydrogen bonding acceptor and the 
appearance of the respective descriptors in the best correlation 
reflects the variance of the hydrogen-bond accepting ability of 
different pyridines in water and in octanol. The correlation 
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Table 4 Details of the correlation developed for octanol- 

R 2  = 0 943, R,Z, = 0 929, F = 177 0, s = 0 19, n = 71 

water partition coefficient data 

Descriptor 
Regression 
coefficient t-criterion 

Intercept - 2 0 2 3  - 10 1 
22 4 

(2) Number of double bonds - 1046 - 1 8 4  

( 1 )  Kier & Hall valence connectivity index 

(3) Minimum resonance energy for a C-N 0 225 9 7  

0 567 
of zeroth order 

bond 
(4) Maximum valency of an N atom 3 033 9 2  
(5) Number of N atoms - 0 4 5 4  - 6 9  
(6) Minimum electron-electron repulsion 0 0433 6 5  

for an N atom 

obtained for logP can be of practical significance, as this 
quantity is of major importance in predicting the biological 
activity of chemical compounds 

9 Future Perspectives 
We believe that advanced software for QSAR/QSPR should 
include all of the various types of molecular descriptors since 
there is no evidence that one particular class of descriptors 
should necessarily predominate in regression models The deve- 
lopment of new descriptors will obviously continue in new areas 
of QSPR applications, such as the treatment of polymers and 
mixtures, as well as in attempts to describe temperature-depen- 
dencies With the involvement of quantum-chemical calcula- 
tions providing a vast amount of information regarding struc- 
ture, the development of descriptor definition language so that 
new descriptors can be generated instantly appears feasible 

The search for effective procedures to find the best correlation 
between molecular descriptors and target performance domi- 
nates QSAR/QSPR research New methods include principal 
component analysis and nonlinear regression analysis A pro- 
mising alternative to the correlation equation is the use of neural 
networks Properly built and trained neural networks provide 
effective predictive power 

The most challenging problem in QSAR/QSPR research is the 
so called ‘Inverse Problem’ (targeted search for the compound(s) 
with a prescribed value of molecular property or biological 
activity), which is attracting more and more attention from 
computational chemists around the world Prerequisites to 
significant progress in this problem are a good data set, powerful 
QSAR/QSPR software, a reliable regression model, and des- 
criptors which can elucidate structural features endowing tar- 
geted property/activity One of the first phases in solving this 
problem would be to create descriptor databases and allow 
computers to search for structures with a targeted property 
value, once a correlation model has been established 
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