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1 Aims and Objectives of QSPR Research

The structural formula of an organic compound, in principle,
contains coded within it all of the information which predeter-
mines the chemical, biological, and physical properties of that
compound. The molecular formula defines precisely all of the
molecular properties and features, including, for example, the
compound’s rate of oxidation, the equilibrium constant and rate
of absorption on any defined surface, the degree to which it will
inhibit rust formation in sea water under any defined set of
conditions, and so on. If we could only read the code, such
properties could be elucidated simply from a knowledge of the
molecular formula.

There are two main alternative approaches to Edisonian
random testing to find compounds with superior properties. One
consists of theoretical calculations using quantum and statistical
mechanics. Solution of the Schrédinger equation would allow
prediction of all of these factors in stationary states of molecules.
However, although much progress has been made, particularly
with semi-empirical methods, the practical application of quan-
tum theory to complex systems still remains a distant possibility.

The other alternative is QSAR/QSPR. A major goal of
Quantitative Structure—Activity Relationship (QSAR) or Quan-
titative Structure Property Relationship (QSPR) studies is to
find a mathematical relationship between the activity or
property under investigation (e.g. LDy, pK,, etc.), and one or
more descriptive parameters (descriptors) related to the struc-
ture of the molecule. While such descriptors can themselves be
experimental properties of the molecule, it is generally more
useful to use descriptors derived mathematically from either the

2D or the 3D molecular structure, since this allows any relation-
ship so derived to be extended to the prediction of the property
oractivity for unavailable compounds. If an acceptable model of
this type can be found, it can guide the synthetic chemist in the
choice between alternative hypothetical structures. More funda-
mentally, such studies can illuminate, or even elucidate, the
‘mechanism’ by which the property or activity in question is
related to the chemical structure.

2 Background

Some years ago, in a major ongoing project in one of our
laboratories,! 3 we were faced with the analysis of complex
mixtures containing up to 30 different compounds derived from
a single precursor at high temperature. We found that such
mixtures could satisfactorily be analysed by the GC/MS
method. The peaks were resolved, and from their fragmentation
patterns, knowledge of the precursor, and some idea of the
mechanism, we were able to assign chemical structures to all of
our products. However, before we could carry out a quantitative
analysis, it was necessary to know the response factors for all of
the compounds, i.e., the relationship between the integrated area
under the GC curve for the individual peaks, and the compound
structure. Response factors vary considerably. Many of the
compounds formed as products were unavailable, and in some
cases, even unknown; it was quite impracticable to measure the
response factors experimentally. Thus, we began an investi-
gation of QSPR relationships between GC analytical response
factors and chemical structures.
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Andillustration of the problem is demonstrated by the analysis
of the GC trace of the mixture shown in Figure la. We used
Partial Least Squares Analysis to search for a reliable depen-
dence of the RF on the structural descriptors in terms of atomic
groupings.* We measured the response factors for a set of 120
different compounds under standard conditions. We used these
response factors as the dependent variable in the Partial Least
Squares Analysis and used seventeen descriptors as the explana-
tory variables. All of these descriptors were simply determined
from the chemical structure: (in order from 1 to 17) molecular
weight, numbers of C, H, O, N, and S atoms, numbers of C=C,
C=0, and C=N double bonds, number of C=N triple bonds,
number of rings, and numbers of carboxyl, hydroxyl, aldehyde,
ester, amino, and ether or sulfide groups. The results of the
Partial Least Squares Analysis led to equation 1, which then
enabled the prediction of response factors for hypothetical
compounds. The success of the method is shown graphically in
Figure 1b. Although the correlation 1s not perfect, it is certainly
much better than the alternative, which was to have set all of the
RF values as equal to unity.

697

RF = 0991 — 0.000908x, + 0.00234x, + 0.00276x,
—0.112x, — 0 0711x5 — 0.160x4 + 0.00337x,
~ 0.0434x, — 0.0479x, — 0 0777x0 + 0.00481x,,
- 0.323%,, — 0.0536x,5 — 0 206x,, — 0.0459x,

— 0 166x, 4 — 0.0675x,, (1

This initial problem, and its interim solution, led to our
interest in the search for regularities in the manner in which
various molecular properties change, and how such variations
depend upon molecular structure - the main focus of QSAR/
QSPR investigations. The general solution of this problem is of
great importance. Even for a narrow class of compounds, any
regularities disclosed can be used to rationalize the behaviour of
molecules in the set, and especially to forecast the properties of
other (sometimes hypothetical) compounds belonging to the
given class. Moreover, the relationships thus revealed between
structures and properties (or biological activities) could be
important for the development of a new theory, which could in
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Figure 1 (a) GC trace of a mixture of ten compounds (b) Plot of the
experimental vs. calculated (by the PLS model) response factor values
for compounds from the reference set (O) and from the test set (A) #

turn both explain the observed phenomena and illuminate the
mechanisms of physical or chemical phenomena or of biological
activities. Thus QSAR/QSPR studies can bring us nearer to the
ultimate goal of targeted molecular design.

QSAR/QSPR investigations in the past two decades have
made significant progress in the search for quantitative relations
between structure and property. Various mathematical model-
ling techniques have been employed and a whole new area
involving the application of computers to chemistry has opened
up. Extensive software for the determination of ‘structure—
activity/property’ relationships has been created, including
modules for structure input and for the calculation of empirical
and also non-empirical descriptors of the given structures. In
most cases, a statistical treatment of these results is also incor-
porated into the package. To mention a few representative
programs, there are universal packages, such as ADAPT distri-
buted by MDL and CODESSA distributed by Semichem. Other
QSAR packages have been designed to treat congeneric struc-
tures only: DARC/PELCO by University of Paris, and OASIS
by PI Burgas, Bulgaria. Additionally, some programs provide
QSAR for specific compounds or data: TOPKAT by HDI,
MEDCHEM by Pomona College, and POLLY by University of
MN.

3 Theoretical Foundation of QSAR/QSPR

The mathematical foundation of quantitative structure—
activity/property relationships relies on the principle of poly-
linearity (PPL).> According to the PPL, a continuous and
singular dependence between the (experimentally measurable)
property P, and some intrinsic structural factor of the molecule,
X, isassumed to be linear in a certain domain of this factor, {x;}.
This assumption may be valid or invalid, depending on the
functional form of the dependence P,(x)) in the vicinity of point
x,. In the event of PPL being valid, the experimental property
may depend upon only one structural factor, X, and the
corresponding linear one-parameter regression equation can be
found using the linear least squares method (equation 2).
Alternatively, the property may depend linearly on several
structural factors X, and the corresponding multi-parameter
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regression 1s found using the multilinear least squares method
(equation 3)

Pl = a()l + ath (2)
P =a, +a,X, +ayX, + a3 X; + 3

In the event that the PPL approximation is invalid, some form
of nonlinear equation has to be applied for the description of the
dependence of the experimental property on structural factors
If a nonlinear transformation of the structural factors 1s used,
e g square, logarithm, or cross-term (equation 4), then the
formal functional dependence of P, on X] 1s still inear and the
corresponding correlation equation can be found using the same
multilinear least squares method (equation 5)

(square)XJ' = X?or (logarlthm)XJ' = InX,
or (cross—term)X; = X Xy

P =dp, + a\\ X + a5 X5+ a X+ (5)

4

In some cases — notable examples 1n chemistry include the
exponential relationships between experimentally measurable
quantities and intrinsic structural factors in chemical or absorp-
tion kinetics — the nonlinear least squares method has to be
applied 1n order to find the regression parameters a,,, predeter-
mining the functional dependence P,(X)) For instance, in the
case of the simple parallel reaction A—B or C with two rate
constants k, and k,, the observable rate constant by inmitial
compound A 1s given by equation 6 and the regression coeffi-
cients a, can be found using nonlinear least squares techniques

kons(IA]) = k| + k; = exp(— AG{/RT) + exp(— AG3/RT)
where AGY = aq, + a;, X, + a,, X, T as, X5+ (6)
and AG, =agy, +a,;, X, +a,,X, +a;X;+

However, most of the QSAR/QSPR applications are based on
the PPL and therefore we Limit ourselves in the following
discussion to linear relationships only, keeping in mind that their
extension to nonlinear dependenceis 1s straightforward

Historically, the first applications of quantitative structure—
property relationships 1n chemistry were related to chemical
reactivity 1n solution Hammett® defined the o-constant of a
substituent 1n a phenyl ring as the logarithmic ratro of the acidic
dissociation constants of the substituted to unsubstituted ben-
zoic acid 1n aqueous solution (equation 7), he demonstrated 1ts
applicability for the description of rate and equilibrium con-
stants of various chemical reactions mvolving substituted
benzenes

o = log(Kx/Ku) M

Taft” extended these so-called linear free energy relationships
to aliphatic structures by defining ¢* constants of substituents as
the differences in the logarithmic ratios of the rate constants for
acid- and base-catalysed hydrolysis reactions of substituted and
unsubstituted ethyl acetates (equation 8)

o* = 1/2 48{log(k/ko)p — log(kfko)al ®)

To date, numerous empirical scales have been proposed to
describe the inductive, resonance, and steric substituent effects
1n the molecules as well as for the description of solvent effects on
the chemical and physical properties of compounds 8 1°©

A major disadvantage 1n the use of these empirical molecular
structural factors as descriptors results from their definition on
the basis of some experimental information Consequently,
certain standard compounds used to define the substituent or
solvent parameters have to be synthesized and the correspond-
ing standard properties measured Purely experimental
problems (instability of the compound, insolubility 1n a given
medium, efc ) may substantially restrict the selection of com-
pounds whose properties can be predicted using these descrip-

tors Notably, because of the insufficient solubility of many
substituted benzoic acids 1n aqueous solution, Hammett had to
use pK, values in 50% ethanol-water mixtures (another
standard series) for the extension of his ¢-scale

4 Main Types of Descriptors used in a QSAR/
QSPR Program

We now review the main types of theoretical descriptors derived
from molecular structure We believe that 1t 1s advantageous to
subdivide descriptors into various subsets according to the
molecular peculiarities which they reflect Thus, we distinguish
constitutional, topological, geometric, electrostatic, quantum-
chemical, thermodynamic, and solvation descriptors It should
be emphasized, however, that many descriptors are, in fact,
simultaneously sensitive to a number of molecular features, and
the classification given below 1s therefore somewhat approxi-
mate and provisional Examples of commonly used descriptors
are given 1n Table 1

Constitutional descriptors depend fundamentally on the com-
position of the molecule rather than on the topology, geometry,
orelectronic structure The counts of atoms of different elements
and the molecular weight reflect the composition only, however,
numbers of rings or double bonds are also sensitive to the
molecular topology Constitutional descriptors, whilst very
simple 1n nature, should be included in QSAR/QSPR studies If
not, the possibility exists that a simple dependency (additivity)
upon number of atoms or molecular weight would be repre-
sented by other more complex (and thus more difficult-to-
comprehend) descriptors, or may even be overlooked
altogether

Topological descriptors are probably the most widely used
class of descriptors and include such well-known classical mole-
cular parameters as the Wiener index,!! the Randic index,!? and
the Kier & Hall Molecular Connectivity index '3 These descrip-
tors are obviously most sensitive to the molecular topology (1 e
molecular connectivity), and 1n particular to the branching of
the molecule Again, some topological descriptors (e g the Kier
& Hall index) also reflect molecular composition, although to a
lesser extent than the constitutional descriptors

The electrostatic descriptors essentially reflect the electro-
static structure of the molecule (e g the partial charge distribu-
tion or the electronegativities of the atoms), although in many

Table 1 Main types of molecular descriptors

Constitutional descriptors
molecular weight

counts of atoms and bonds
counts of rings

Topological descriptors
Weiner index

Randic indices

Kier & Hall indices
information contents

Electrostatic descriptors
partial charges

polarity indices

charged partial surface areas

Geometrical descriptors

principal moments of 1nertia
molecular volume
solvent-accessible molecular surface
shadow 1ndices

Quantum-chemical descriptors
net atomic charges

dipole moment

polarizability

o,m bond orders

HOMO, LUMO energles
FMO reactivity indices
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cases they are also related to the molecular topology and
composition.'* For example, the descriptors of the ‘Charged
Partial Surface Areas’ family reflect, in comparable proportions,
the electrostatic, geometric, and topological features of a mole-
cule.!5:16 The distribution of partial charges can be calculated
by one or more non-empirical procedures within the QSAR/
QSPR program, or independently of the program by any desired
method, for instance, by a quantum-chemical program.

Geometric descriptors represent the three-dimensional
characteristics of the molecular structure, i.e. molecular size and
molecular shape.!”

Quantum-chemical descriptors are a relatively new and
rapidly developing class of molecular descriptors. As ab initio
and semi-empirical quantum chemical calculations become
increasingly available and routine, these descriptors have
become more widely used. Quantum-chemical calculations can
provide vast amounts of varied information about chemical
structure including geometric and electrostatic data. But most
importantly such calculations can provide information about
the internal electronic properties of molecules which is not
available by other means. Thus, quantum-chemical descriptors
extend the areas of application of QSAR/QSPR techniques. The
most frequently used quantum-chemical descriptors include the
energy of the highest occupied and lowest unoccupied molecular
orbitals, frontier orbital electron densities, Mulliken population
charge distribution, and dipole moments.18—24

In addition to using these descriptors in the QSAR/QSPR in
their traditional forms, it is frequently possible to include
additional ‘modified’ descriptors. For example, most descrip-
tors may also be normalized by dividing by the number of atoms,
therefore giving an ‘average’ value of the descriptor. Advanced
QSAR/QSPR programs can calculate not only the standard
descriptor values, but also several modifications of them.

5 General Fiow-Chart of a QSAR/QSPR
Program

We proceed now with a more detailed description of the overall

procedure of computer-assisted QSAR/QSPR research which is

summarized by the following steps (Figure 2).

4 \

PREPARATION OF INPUT DATA
cyclohexane C6H12 BP =353.87K

e J/

:

(" 3D GEOMETRY OPTIMIZATION )

r ~
CALCULATION OF DESCRIPTORS

molecular weight = 84.16
number of atoms = 18

STATISTICAL ANALYSIS

BP=A0+A1X1 + ...

QSPR REPORT AND PREDICTIONS
predicted BP = 354.69K

Figure 2 Flow chart of a QSPR study.
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5.1 Preparation of Input Data

First, the set of experimental data and the set of corresponding
structures each needs to be prepared in computer-acceptable
format. The experimental data, being numerical values, are
usually easily represented in computer-readable format. The
computer-compatible representation of structural formulae is
an important step, which will be discussed in more detail below.
Briefly, a specialized molecular editor is usually needed for the
conversion of drawings into the corresponding connectivity
tables.

5.2 3D-Geometry Optimization

Molecular shapes and conformations are often of great import-
ance for the prediction and description of biological activities
and molecular properties. Simple molecular editors create con-
nectivity tables which do not contain any geometrical infor-
mation. In such cases a 2D—3D converter is required. For
example, the MOLGEO program?3 converts the 2D-connecti-
vity tables into a 3D-representation of the molecule with concur-
rent geometry optimization. Programs exist which combine a
molecular editor with a geometry optimization routine that is
usually based on molecular mechanics or a semi-empirical
method, e.g. PCMODEL, SYBYL, HyperChem. If more precise
3D Cartesian coordinates are required an additional refinement,
by quantum-chemical ab initio or semi-empirical methods such
as AMI12¢ (e.g. MOPAC?” and AMPAC?8 programs), is
suitable.

5.3 Calculation of Molecular Descriptors

After the set of 3D-optimized structures is prepared, the QSAR/
QSPR program carries out the calculation of molecular descrip-
tors. The molecular descriptors applicable in QSAR/QSPR
research were discussed in more detail above. In order to
calculate quantum-chemical descriptors, preliminary calcula-
tions of the molecular electronic structure by the appropriate
method (e.g. AM129) are required.

5.4 Statistical Treatment of Data

The set of molecular descriptors calculated by the QSAR/QSPR
package is further treated via comparison with the experimental
data by (multi)parameter linear regression analysis.2® Two
major problems arise which are related to the use of a large
number of molecular descriptors as potential independent vari-
ables in the QSAR/QSPR equations under development. First,
in the case of hundreds or even thousands of descriptor scales,
the number of possible (multi)linear equations to be verified for
the best correlation is astronomically large and the calculation
of all relevant regression equations takes an impractically long
time even using the fastest of modern computers. Secondly, the
calculated descriptor scales are, in general, non-orthogonal, i.e.
the corresponding intercorrelation coefficients deviate signifi-
cantly from zero. It is well-known from basic mathematics that
an arbitrary scale (property P) cannot be singularly represented
in the space of such descriptor scales. In other words, two or
more different correlation equations exist in this space with
exactly the same statistical fit characteristics. This obviously
complicates the physical interpretation of any of these equations
immensely. Even worse, the collinearity of descriptor scales may
often lead to statistically meaningless regression equations
without any predictive power. Therefore, special precautions
have to be taken to avoid or alleviate these problems. For
instance, factor analysis methods like principal component
analysis (PCA) or nonlinear partial least-squares (NIPALS) can
be applied to transform the non-orthogonal descriptor scales
into orthogonal formal principal factors, describing within a
given statistical tolerance all of these scales.>® The dimensiona-
lity of the corresponding vector space is usually dramatically
reduced making the search for the best correlation quite
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straightforward However, 1t 1s often very difficult or even
impossible to give a physically meaningful interpretation either
to the regression coeflicients preceding the formal scales, or to
these scales themselves In order to overcome this difficulty,
numerous target transformation techniques are available which
aimm to find (nearly) orthogonal subsets of original descriptor
scales with the maximum coverage of the full descriptor space 3!
Complex logical or heuristic procedures, described in more
detail below, can also be efficiently used to find the best
(multi)linear representation of the given property 1n the (nearly)
orthogonal basis of natural descriptor sets

5.5 QSAR/QSPR Report

The typical output of a QSAR/QSPR program includes a
number of correlation equations including correlation coeffi-
cients (R or R?), statistical significance tests (F-test, r-test),
involved descriptors (x;) and their corresponding regression
coefficients (¢,) Selection of the best correlation model 1s usually
done by validation of each model either by cross-validation
techniques or by prediction response values for the test set

6 QSAR/QSPR Software

A statistical procedure 1s always necessary for the statistical
treatment of data obtained from a QSAR/QSPR program
There are several commercially available statistical packages,
such as SAS or STATGRAPHICS 32 However, such modules
are not always suitable for handling very large data sets or for
producing an unambiguous and easily understandable selection
of the parameters involved 1 the required multiparameter
regression Numerous QSAR/QSPR packages are available
both commercially and 1n the academic environment The
DARC and OASIS programs are configured to treat so-called
‘congeneric’ sets of molecules In other words, all structures 1n
the set under consideration should possess the same basic
molecular fragment Such packages utilize the most traditional
approach im QSAR, established by Hansch in the late
1960’s 33 34+ The Hansch approach assumes that (z) there 1s a
basic fragment 1n the structure responsible for a given kind of
property/activity, (11) the variation of the property/activity value
can be explamed by the influence of different substituents
attached to the basic fragment, and (ui) the property/activity
value can be calculated as an additive value, the sum of terms
being derived from the physicochemical constants of the substi-
tuents (stmilar to the Hammett-Taft equations 7,8)

However, many failures of the Hansch equation have been
observed, and significant limitations of this approach have been
recognized over the past 30 years A further serious drawback 1s
evident, 1n the real world the series of compounds that most
interest chemists are rarely congeneric! It 1s impossible for the
Hansch approach to be applied to such non-congeneric series
Even when a series does comprise ‘related’” compounds, 1t 1s
often difficult to assign a physicochemical constant to an
unusual substituent Hansch analysis proved to be a good
beginning, but the development of other approaches became
essential

There are many programs currently available which have been
formulated to work on specific data sets A good example 1s the
TOPKAT program, designed exclusively to predict toxicity
endpoints from molecular structure The MEDCHEM program
1s structured to calculate logP values The POLLY program
operates on a restricted set of molecular descriptors By con-
trast, the ADAPT and CODESSA programs are universal
packages able, 1n principle, to treat any set of compounds and
their associated experimental data, although 1n some individual
cases the use of one of the specific programs might lead to a more
precise regression model

The ADAPT program offers numerous options and possibili-
ties such as intellectual cluster analysis within a given set of
compounds, complex statistical treatment of the experimental
data together with the calculated descriptors, combination of

the empirical parameters with those obtained by the modern
non-empirical quantum chemical calculations, expert system
features, databases, highly developed user interfaces with gra-
phical input—output, and other menus or windows

CODESSA (Comprehensive Descriptors for Structural and
Statistical Analysis) 1s a chemical multi-purpose statistical
analysis and prediction program CODESSA operates 1n a
Microsoft Windows environment for personal computers and
also provides an easy-to-use user interface with menus and
windows for textual and graphical output Within the frame-
work of the program up to one thousand varied molecular
descriptors can be calculated Moreover, CODESSA provides
the facility to construct numerous new descriptors using any
previously calculated descriptors and standard mathematical
operations and functions The correlation techniques available
include multi-linear regression analysis, principal component
analysis, and the heuristic method Elaborate techniques have
been developed in CODESSA for a fast and adequate search for
the best correlation equations for a given property and structure
set In the following section one of these techniques 1s described
1n more detail

7 Statistical Treatment of Data in
QSAR/QSPR

As discussed above, the rigorous selection of the uniquely best
parameters for a correlation equation from a very large descrip-
tor set remains an unsolved statistical problem As frequently
pointed out 1n statistical texts and papers, the existing heuristic
selection of descriptors 1n a step-wise multi-parameter regres-
sion analysis does not necessarily guarantee the best selection of
descriptors

In the CODESSA program the search for the multi-parameter
regression with the maximum predictive ability 1s performed
using the following strategy 3

1 First, the intercorrelations between all descriptors are
calculated and all orthogonal pairs of descriptors 1 and j (with
R{ < R%,,) are found

2 The statistical analysis of the property starts with the
calculation of the two-parameter regression with each orthogo-
nal pair of descriptors, obtained 1n step 1 The descriptor pairs
with high regression correlation coefficients are then selected for
higher-order regression treatments

3 For each descriptor pair selected in the previous step a non-
collinear descriptor scale, k (with Rf < RZ. and R, < RZ), 15
added, and the respective three-parameter regression 1s calcu-
lated If the Fisher criterion at a given probability level, F, 1s
smaller than that for the best two-parameter correlation, the
latter 1s chosen as the final result and the program proceeds to
the printout section (step 5) Otherwise, the descriptor triplets
with the highest regression correlation coefficients are selected
for the next step

4 In a similar fashion, an additional non-collinear descriptor
scale 1s added to each descriptor subset selected in the previous
step, and the respective (n + 1)-parameter regression treatment
1s performed Ifthe Fisher criterion at the given probability level
F,1s now smaller than for the best n-parameter correlation found
in the previous step, the latter 1s chosen as the final result and the
program proceeds to the printout section (step 5) Otherwise, the
descriptor subsets with the highest regression correlation coeffi-
cients are selected, and the procedure described in Step 4 1s
repeated withn=n + 1

5 The final equation, used 1n the following prediction section
of the program, 1s selected on the basis of the maximum Fisher
criterion and the highest cross-validated correlation coefficient
The cross-validation technique 1s carried out as follows (i) for
each experimental data point multi-linear regression 1s recalcu-
lated with the same descriptors for the data set without this
point, (1) the obtained regression equation 1s then used to
predict the value of this data point, and (u:) finally, the obtained
array of predicted data points 1s linearly correlated with the
array of experimental data points providing a cross-validated
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correlation coefficient. Thus, the cross-validation technique
provides an estimation of the stability of the obtained regression
model, i.e. the sensitivity of the model to the ehmination of any
single data point.

All criteria involved m the statistical treatment can be
changed if so desired, in order to maximize the effectiveness of
the search.

8 Overview of Some QSPR Results Obtained

We now present some results concerning the correlation of
structure and property 1n organic compounds. These findings
were recently obtained using the CODESSA program. The goal
of these studies is to find both the best regression model for the
prediction of properties, and also to determine which types of
descriptors are the most sensitive to each of the various
properties.

8.1 Response Factors

Returning to the calculation of response factor (RF) values,
Figure 3a illustrates the results obtained from a QSPR treatment
of aset of 152 diverse organic compounds.3¢ Use of the extended
set of descriptors developed in the CODESSA program allowed
us to improve the correlation significantly over the PLS analy-
s1s.* The regression presented in Figure 3a with only 6 para-
meters (one third of the number used in the PLS treatment) hasa
better correlation coefficient (R? = 0.892 vs. R? = 0.840). 98%
of the observed values were found to be within a 95% confidence
interval for values predicted using the six-parameter equation
(Table 2a).

The data set for gas chromatographic response factors and
retention times contained structures belonging to classes of
organic compounds very diverse mn their chemical nature:
alkanes, aromatic compounds, ethers, carbonyl compounds,
carboxylic acids, alcohols, aldehydes, etc.

The measured response factor corresponds to the ‘response’
of the compound in a flame 10nization detector (FID). Flame
10nization 1s a multi-step process involving thermal decompo-
sition of a compound with subsequent ‘chemi-ionization’.
Therefore, the yield of this process depends on the chemical
nature of the molecules and the atoms from which they are

(@)
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constructed. As expected from this qualitative reasoning, both
types of descriptors were involved 1n obtaining the correlation.
The most important descriptor is the relative weight of ‘effective’
carbon atoms in the molecule, which has precedence given that
only non-oxidized carbon atoms effectively produce a response
in the FID. In this study an ‘effective’ carbon atom was defined
as one connected only to other carbon or hydrogen atoms. The
relative number of ‘effective’ carbon atoms is also important for
the same reasoning. The thermal cracking of a compound inside
the flame of an FID begins with the weakest C—X bond (where X
is any atom). This being the case, the minimum total bond order
of a carbon atom 1s obviously an important descriptor. The total
molecular one-centre electron—clectron repulsion also proved to
be an mmportant descriptor. This quantity summarizes the
repulsion of electrons in the atoms constituting the molecule,
and is probably related to the tendency of thermally cracked
products to undergo ‘chemi-ionization’.

8.2 Retention Times

A QSPR study of retention time data for the same set of 152
diverse organic compounds yielded a highly successful correla-
tion (Figure 3b).3% The best six-parameter equation obtained
(R? = 0.959, Table 2b) is stable (cross-validated correlation
coefficient R%, = 0.955) and could be used, with considerable
confidence, for the prediction of a retention time for an un-
known compound. The few outliers (hexamethylbenzene, fluor-
ene, 2-isopropoxyphenol, 1-methyl-2-pyridone, and methyl
phenyl sulfoxide) do not belong to any recognizable class of
compounds and seem to be random.

The most important descriptors in this correlation are the a-
polarizability of the molecule and the minimum valency of an H
atom i the compound. These quantum chemical indices can be
considered to be related to the intermolecular interaction
between the molecule studied and the gas chromatographic
medium. The a-polarizablity of the compound characterizes the
effectiveness of its intermolecular induction and dispersion
interaction with the medium. The positive value of the respective
regression coefficient is in accordance with physical consider-
ations — compounds with higher polarizabilities have stronger
interactions with the medium and thus higher retention values.
The minimum valency of an H atom characterizes the compound

(b)

Organic compounds (152 structures)
R2=0.9590 F=367.86 s2=0.5152 (6 descriptors)

Calculated Retention Time

14.78:-

135 478 8.20 1162 1504
Experimental Retention Time

Figure 3 Plots of the calculated vs. experimental response factor (a) and retention time (b) values for the diverse set of 152 organic compounds
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Table 2a Details of the correlation developed for the response factor data

Descriptor Regression coefficient t-criterion R?
Intercept - 2327 — 641

(1) Relative weight of ‘effective’ C atoms - 09581 20 76 04655
(2) Total molecular one-centre electron—¢lectron repulsion energy - 0002889 11 34 07522
(3) Relative number of ‘effective’ C atoms ~ 1160 11 34 07776
(4) Mimimum total bond order (> 0 1) of a C atom - 02060 10 60 0 8245
(5) Minimum valency of an H atom 3316 883 0 8869
(6) Total hybridization component of the molecular dipole - 00304 273 08924
Table 2b Details of the correlation developed for the retention time data

Descriptor Regression coefficient t-criterion R?
Intercept 26 50 6 942

(1) Relative number of C—H bonds - 691 9 269 01229
(2) Total entropy of the molecule at 300 K divided by a number of atoms - 0871 8 543 06969
(3) a-Polarizability 004624 8 389 0 9064
(4) Molecular weight 001873 5869 09397
(5) Minimum valency of an H atom — 2155 5362 09539
(6) Maximum atomic orbital electronic population 0929 4256 09590

as a hydrogen-bonding donor Therefore, the presence of this
term 1n the correlation indicates the importance of hydrogen
bond formation between the compound studied and the GC
medium The negative value of the respective regression coeffi-
cient 1s expected (compounds with a lower value for mmimum
valency have stronger hydrogen bonds and, correspondingly,
longer retention times)

8.3 Boiling Points

We studied the boiling point data for a set of 85 substituted
pynidines provided by Reilly Industries, Inc 37 Among the
substituents were methyl-, ethyl-, amino-, carboxamido-,
cyano-, chloro-, carbonitrile-, and hydroxy-groups Preliminary
component analysis of the data set revealed clustering of the
compounds into two distinctive groups An examination of the
compound distribution suggested hydrogen bonding as the most
probable reason for such clustering Indeed, all compounds
containing hydroxy-, amino-, and carboxamido-substituents
fell into one group and the remainder into the other Hydrogen
bonding 1s expected to lead to associated liquids, and therefore
the boiling points of these structures predicted by the equation
derived for non-associated compounds should be significantly
lower than the corresponding experimental values This was
demonstrated by our treatment, the reduced set of 63 non-
associated compounds produced a good correlation
(R? =0927) with only two descriptors the gravitation index
calculated for all bonds and the rotal point-charge component of
the molecular dipole moment As expected, the boiling points
predicted for the remaining 22 structures were lower than the
experimental values

A good multilinear regression model was obtained for all 85
compounds for which data were available using six structural
parameters (R? = 0 948, Figure 4a) In the final model (Table
3a) two descriptors were the same as previously mentioned the
gravitation index (all bonds) and total point-charge component of
the molecular dipole which characterize the general relationshp
between the chemical structure and the boiling point Two
descriptors, the hydrogen acceptors surface area and the relative-
negative charged surface area, are solely related to hydrogen
bonding and adjust the model to describe associated structures
The two remaining descriptors, the minimum total bond order of
an N atom and the average atomic nucleophilic reactivity index for
an N atom, describe the availability of a nitrogen lone electron
pair for intermolecular hydrogen bonding

Considering that high boiling points are difficult to measure

Table 3a Details of the correlation developed for the boiling

point data
R*=0948, R%, =0876, F=2387,5=138,n=28S
Regression
Descriptor coeffictent  t-criterion
Intercept -3093 - 118
(1) Hydrogen acceptors surface area 6463 228
(2) Gravitation index (all bonds) 0265 139
(3) Minimum total bond order (>0 1) 1860 147
of an N atom
(4) Total point-charge component of 20 69 104
the molecular dipole
(5) Relative negative charged surface area — 2782 -98
(6) Average atomic nucleophilic reactivity 2680 2 64
index for an N atom
Table 3b Details of the correlation developed for melting
point data
R*=0857, R, =0843, F=1336,5s=361,n=141
Regression
Descriptor coefficient t-criterion
Intercept - 6140 -06
(1) Fractional hydrogen acceptors surface 5258 199
area
(2) Maximum atomic force constant 1443 82
(3) Maximum atomic orbital electronic 244 7 63
population
(4) Average structural information - 6161 -52
contents of the second order
(5) HOMO-LUMO energy gap -3810 —47
(6) Total hybridization component of the 3702 42

molecular dipole

directly and are usually measured under reduced pressure then
corrected to atmospheric pressure, the correlation equation
obtained provides a successful fit to the data

8.4 Melting Points

We also searched for correlations of melting points of substi-
tuted pyridines 37 The melting point 1s a difficult property to
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Figure 4 Plots of the calculated vs. experimental boiling points (a) and melting points (b) for the two sets of substituted pyridines

correlate because singular molecular descriptors do not satistac-
torily describe many-body crystal packing effects and intermole-
cular forces in condensed media. However, the multiple linear
regression analysis of the melting points for a set of 141
compounds for which data were available resulted in a satisfac-
tory six parameter correlation equation (R? = 0.857, Figure 4b).
Again, one of the most important descriptors in the correlation
equation (Table 3b) was a hydrogen bonding specific descriptor:
fractional hydrogen acceptors surface area. This parameter dir-
ectly represents the ratio of the surface area of the hydrogen
acceptor atoms to the total surface area of the molecule. The
other descriptors involved in this correlation were physically
more diverse than those in the correlation of boiling points. This
is not surprising as the melting point is expected to depend on
more subtle intermolecular interactions in condensed phases
than the boiling point. However, three descriptors in the six-
parameter equation obtained for the melting points (the maxi-
mum atomic force constant, the maximum atomic orbital electro-
nic population and the total hybridization component of the
molecular dipole) can be related to the intermolecular interac-
tions in condensed media (charge-transfer and dipole-dipole
interactions). The average structural information contents of the
second order reflects the number of different structural fragments
in the molecule and may therefore be related to the details of the
crystal lattice packing. Notably, one of the main factors in this
correlation was the HOMO-LUMO energy gap. For insulators,
such as solid state substituted pyridines, this quantity can be
related to the energy gap between the valence band and the
empty band. The negative sign of the respective regression
coeflicient implies that solids with a smaller band gap are more
resistant to disordering (melting).

Hydrogen bonding obviously has a significant effect on the
melting point, although the distinctive clustering of compounds
according to association capability (as in the case of the boiling
point) was not observed.

8.5 Partition Coefficients

A good correlation (R? = 0.943) was obtained with the octanol-
water partition coefficient of 71 substituted pyridines (Figure
5).37 The equation obtained (Table 4) is quite successful, bearing
in mind the great variety of functionality: amino, alkyl, amidio,

structures (71 structures)
R2=0.9432 F=177.02 s2=0.0366 (6 descrin_tors)

Calculated Partition Coefficient
%,

-0.;64 0.?1 1.126 2.122 3.?7
Experimental Partition Coefficient

Figure 5 Plot of the calculated vs experimental octanol-water partition
coefficient values for the set of substituted pyridines

nitro, hydroxy, cyano, and thio groups, halogen atoms, ethers,
esters, and aromatic rings. Moreover, both solids and liquids (at
room temperature) were represented in the set. Kier and Hall
valence connectivity index of the zeroth order and the number of
double bonds proved to be the most significant descriptors for the
set of structures under investigation. The fact that similar
descriptors have been reported to correlate with partition coeffi-
cients of different compounds3® suggests that this correlation
model has wider applications. The other descriptors are directly
related to the properties of the N atom 1n the pyridines. This
atom is obviously acting as a hydrogen bonding acceptor and the
appearance of the respective descriptors in the best correlation
reflects the vanance of the hydrogen-bond accepting ability of
different pyridines in water and in octanol. The correlation
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Table 4 Details of the correlation developed for octanol-
water partition coefficient data

R*=0943, R, =0929, F=1770,5=019,n =71

Regression
Descriptor coefficient  t-criterion
Intercept -2023 -101
(1) Kier & Hall valence connectivity index 0 567 224
of zeroth order
(2) Number of double bonds - 1046 -184
(3) Minimum resonance energy fora C—N 0225 97
bond
(4) Maximum valency of an N atom 3033 92
(5) Number of N atoms - 0454 -69
(6) Minimum electron—¢lectron repulsion 00433 65

for an N atom

obtained for logP can be of practical significance, as this
quantity 1s of major importance n predicting the biological
activity of chemical compounds

9 Future Perspectives

We believe that advanced software for QSAR/QSPR should
include all of the various types of molecular descriptors since
there 1s no evidence that one particular class of descriptors
should necessarily predominate 1n regression models The deve-
lopment of new descriptors will obviously continue 1n new areas
of QSPR applications, such as the treatment of polymers and
mixtures, as well as in attempts to describe temperature-depen-
dencies With the mvolvement of quantum-chemical calcula-
tions providing a vast amount of information regarding struc-
ture, the development of descriptor definition language so that
new descriptors can be generated instantly appears feasible

The search for effective procedures to find the best correlation
between molecular descriptors and target performance domi-
nates QSAR/QSPR research New methods include principal
component analysis and nonlinear regression analysis A pro-
musing alternative to the correlation equation 1s the use of neural
networks Properly built and trained neural networks provide
effective predictive power

The most challenging problem in QSAR/QSPR research s the
so called ‘Inverse Problem’ (targeted search for the compound(s)
with a prescribed value of molecular property or biological
activity), which 1s attracting more and more attention from
computational chemists around the world Prerequisites to
significant progress in this problem are a good data set, powerful
QSAR/QSPR software, a reliable regression model, and des-
criptors which can elucidate structural features endowing tar-
geted property/activity One of the first phases in solving this
problem would be to create descriptor databases and allow
computers to search for structures with a targeted property
value, once a correlation model has been established
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